

Ver.CN20230407

Acarbose

产品简介

Acarbose,又称阿卡波糖,是可口服的 α -葡萄糖苷酶(alpha-glucosidase)抑制剂,是降糖药,通过降低食物中碳水化合物的降解速度,减缓葡萄糖的吸收,用于治疗 II 型糖尿病。

产品信息

英文别名 (English Synonym)	Acarbose, BAY g 5421, Prandase, Precose, Glucobay, Bay-g 5421
中文名称 (Chinese Name)	阿卡波糖
通路 (Pathway)	Protease/Metabolic EnzymeGlucosidase
CAS 号 (CAS NO.)	56180-94-0
分子式 (Formula)	$C_{25}H_{43}NO_{18}$
分子量 (Molecular Weight)	645.60
外观 (Appearance)	粉末
纯度 (Purity)	≥98%
溶解性 (Solubility)	溶于 DMSO 和 H ₂ O
结构式 (Structure)	HO, MAN HO

组分信息

组分名称	54616ES70/54616ES80
Acarbose	200 mg/1 g

储存条件

-25~-15°C保存,有效期3年。

使用方法

【数据来自于公开发表的文献,仅供参考,具体使用浓度请参考相关文献,并根据自身实验条件(如实验目的,细胞种类, 培养特性等)进行摸索和优化。】

1. 细胞实验(体外实验)

Acarbose (1-3 μ M)以剂量和时间依赖性抑制 TNF-α诱导的 VSMC 细胞生长和迁移。 $^{[2]}$

2. 动物实验(体内实验)

在喂食高胆固醇饮食(HCD)的兔子中,给药 Acarbose (2.5-5 mg/kg)可通过上调 AMPK 信号减少炎症、衰老和 VSMC 增殖/迁移,从而抑制动脉粥样硬化。 $^{[2]}$

注意事项

1. 本产品仅作科研用途。

www.yeasen.com Page 1 of 2

- 2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
- 3. 粉末溶解前请先短暂离心,以保证产品全在管底。
- 4. 请勿吸入、吞咽或者直接接触皮肤和眼睛。

参考文献

- [1] Martin AE, Montgomery PA. Acarbose: an alpha-glucosidase inhibitor. Am J Health Syst Pharm. 1996 Oct 1;53(19):2277-90; quiz 2336-7. doi: 10.1093/ajhp/53.19.2277(IF:3.038).
- [2] Chan KC, Yu MH, Lin MC, et al. Pleiotropic effects of acarbose on atherosclerosis development in rabbits are mediated via upregulating AMPK signals. Sci Rep. 2016 Dec 7;6:38642. doi: 10.1038/srep38642(IF:4.011).

www.yeasen.com Page 2 of 2