

Ver.CN20230823

Human Host Cell DNA Residue Detection Kit Human 宿主细胞 DNA 残留检测试剂盒

产品简介

Human 宿主细胞 DNA 残留检测试剂盒是用于定量分析检测各种生物制品的中间品、半成品和成品中的 Human 残留 DNA 含量的试剂盒。

本试剂盒采用探针法荧光定量 PCR 原理,可专一快速的检测 Human 细胞的残留 DNA,其定量限可以达到 $10~{\rm fg}/\mu L$ 水平。该试剂盒可与本公司的磁珠法残留 DNA 样本前处理试剂盒(${\rm Cat}\#18461{\rm ES}/18462{\rm ES}$)配套使用。

产品信息

货号	41325ES50 / 41325ES60
规格	50 T / 100 T

组分信息

组分编号	组分名称	41325ES50	41325ES60
41325-A	Human qPCR Mix	0.75 mL	1.5 mL
41325-B	Human Primer&Probe Mix	250 μL	500 μL
41325-C	DNA Dilution Buffer	1.8 mL×2 管	1.8 mL×4 管
41325-D	Human DNA Control (30 ng/μL)	25 μL	50 μL

运输和储存条件

- 1. 所有组分均干冰运输,-25~-15℃保存,有效期 2 年。其中,41325-A 和 41325-B 均需避光保存。
- 2. 收到货后,请检查共4个组分是否齐全,并立即放入对应的保存温度中储存。

注意事项

- 1. 本产品仅作科研用途。
- 2. 为了您的安全和健康,请穿实验服并佩戴一次性手套操作。
- 3. 使用本试剂前请仔细阅读说明书,实验应规范操作,包括样本处理、反应体系的配制及加样。
- 4. 每个组分在使用前都应充分震荡混匀,低速离心。

适用机型

包含但不限于以下仪器:

Thermo Scientific: ABI 7500, ABI Quant Studio 5;

Bio-Rad: CFX96 Optic Module; 上海宏石医疗科技: SLAN-96S。

使用说明

1. Human DNA Control 定量参考品的稀释和标准曲线的制备

www.yeasen.com Page 1 of 4

用试剂盒中提供的 DNA Dilution Buffer(DNA 稀释液)将 Human DNA Control 定量参考品进行梯度稀释,稀释浓度依次为 3 ng/ μ L、300 pg/ μ L、30 pg/ μ L、30 pg/ μ L、30 fg/ μ L、30 fg/ μ L、30 fg/ μ L。具体操作如下:

- 1)将试剂盒中的 Human DNA Control 定量参考品和 DNA Dilution Buffer 置于冰上融化,待完全融化后,轻微振荡混匀,低速离心 10 sec。
- 2) 取 6 支洁净的 1.5 mL 离心管,分别标记为 Std0、Std1、Std2、Std3、Std4、Std5。
- 3)在标记为 Std0 的离心管中加 90 μL DNA Dilution Buffer 和 10 μL Human DNA Control 定量参考品,Std0 浓度 3 ng/μL,振荡混匀后低速离心 10 sec,该浓度可分装置于-25~-15°C短期保存(不超过 3 个月)",使用时避免反复冻融。
- 4) 在 Std1、Std2、Std3、Std4、Std5 离心管中先加入 90 μL DNA Dilution Buffer^{···}, 再进行梯度稀释^{···}, 具体稀释如下:

稀释管	稀释比例	终浓度
Std1	10 μL Std0 + 90 μL DNA Dilution Buffer	300 pg/μL
Std2	10 μL Std1 + 90 μL DNA Dilution Buffer	30 pg/μL
Std3	10 μL Std2 + 90 μL DNA Dilution Buffer	3 pg/μL
Std4	10 μL Std3 + 90 μL DNA Dilution Buffer	300 fg/μL
Std5	10 μL Std4 + 90 μL DNA Dilution Buffer	30 fg/μL

表 1 标准品梯度稀释

2. 样本加标回收质控 ERC 的制备

根据需要设置 ERC 中的 Human DNA 标准品浓度(以制备加 30 pg Human DNA 量的 ERC 为例),具体操作如下:

- 1)取 100 μ L 待测样本加入 1.5 mL 洁净的离心管中,再加入 10 μ L Std3,混匀,标记为 ERC。
- 2) 加标回收 ERC 和同批待测样本一起进行样本前处理,制备加标回收 ERC 纯化液。

3. 阴性抽提质控 NCS 的制备

根据实验设置阴性抽提质控 NCS,具体操作如下:

- 1)取 100 $\,\mu$ L 样本基质溶液(或 DNA 稀释液)加入 1.5 $\,m$ L 洁净的离心管中,标记为 NCS。
- 2) 阴性质控 NCS 和同批待测样本一起进行样本前处理,制备成阴性质控 NCS 纯化液。

4. 无模板对照 NTC 的制备

根据实验设置无模板对照 NTC,具体操作如下:

- 1)无模板对照 NTC 无需进行样本前处理,在 qPCR 法检测残留 DNA 含量阶段开始配置即可。
- 2)每管或孔中 NTC 样本为 20 μL Mix 混合液(即 15 μL Human qPCR Mix + 5 μL Human Primer&Probe Mix)+ 10 μL DNA Dilution Buffer,建议配置 3 个重复孔的量。

5. 反应体系

组分	体积(μL)
Human qPCR Mix [*]	15
Human Primer&Probe Mix	5
DNA Template ^{··}	10
总体积	30

www.yeasen.com Page 2 of 4

[·]每个浓度做 3 个复孔,该试剂可测试 300 $pg/\mu L\sim$ 30 $fg/\mu L$ 线性范围。若需要,可适当扩大或缩小线性范围。

[&]quot;为减少反复冻融次数和避免污染,建议初次使用时将 DNA 定量参考品分装储存于-25~-15℃。

^{····}已融化未使用的 DNA 稀释液可保存于 2-8℃ 7 天,若长时间不用,请放置于-25~-15℃。

^{......} 为确保模板完全混匀,每个梯度稀释时需轻微震荡混匀约 1 min。

表 2 标准品反应体系

·根据反应孔数计算本次所需 Mix 混合液总量:Mix 混合液=(反应孔数+2)×(15+5) μL(含有 2 孔的损失量)。通常,每个样本做 3 个重复孔。

 $^{"}$ 反应孔数=(5 个浓度梯度的标准曲线+1 个无模板对照 NTC+1 个阴性抽提质控 NCS+待测样 TS 个数+待测样本对应加标回收 ERC 个数)imes 3。

NTC (No Template Control): DNA Dilution Buffer

NCS (Negative Control Solution): 样本基质溶液或 DNA Dilution Buffer 进行样本前处理后,所得纯化液为 NCS

TS (Test Sample): 待测样本

ERC (Extraction Recovery Control): 待测样本中加入如 10 μL 的 3 pg/μL 标准品 DNA 后进行样本前处理,所得纯化液为加标回收 ERC

……加样完成密封好管子后,请低速离心 10 sec 将管壁的液体离心收集至管底,再震荡混匀 5 sec 以上,完全混匀反应液,再低速离心 10 sec 将管壁的液体离心收集至管底,如有气泡,需将气泡排尽。

下表为参考板位:

	1	2	3	4	5	6	7	8	9	10	11	12
Α	NTC		待测样本 TS1	待测样本 TS1	待测样本 TS1		标准曲线 Std1	标准曲线 Std1	标准曲线 Std1			
В	NTC		待测样本 TS2	待测样本 TS2	待测样本 TS2		标准曲线 Std2	标准曲线 Std2	标准曲线 Std2			
С	NTC		待测样本 TS3	待测样本 TS3	待测样本 TS3		标准曲线 Std3	标准曲线 Std3	标准曲线 Std3			
D							标准曲线 Std4	标准曲线 Std4	标准曲线 Std4			
E	NCS		样本加标 ERC1	样本加标 ERC1	样本加标 ERC1		标准曲线 Std5	标准曲线 Std5	标准曲线 Std5			
F	NCS		样本加标 ERC2	样本加标 ERC2	样本加标 ERC2							
G	NCS		样本加标 ERC3	样本加标 ERC3	样本加标 ERC3							
Н												

表 3 上机参考板位

该示例是对 Human 残留 DNA qPCR 法检测操作的展示,检测样本包括: 5 个浓度梯度的 Human DNA 标准曲线、1 个无模板对照 NTC、1 个阴性质控 NCS、3 个待测样本 TS、3 个加样回收 ERC。建议每个样本做 3 个重复孔。

- 6. 扩增程序参数设置 (两步法) (以 ABI 公司 7500 qPCR 仪、软件版本 2.0 为例)
- 1) 创建空白新程序,选择绝对定量检测模板。
- 2)创建 1 个检测探针,Target 1 命名为"Human-DNA",选择报告荧光基团为"FAM",猝灭荧光基团为"None"。参比荧光为"ROX"(参比荧光可根据仪器型号等情况,选择是否需要添加)。
- 3)在 "Assign target (s) to the selected wells" 面板中,将标准曲线孔的 "Task" 一栏设置为 "Standard",并且在 "Quantity" 一栏分别赋值为 "300000"、 "3000"、 "3000"、 "3000"、 "300"、 "300"(含义为每孔 DNA 浓度,单位为 fg/μ L),并且 在相应的 "Sample Name" 一栏命名为 "300 pg/μ L"、 "30 pg/μ L"、 "3 pg/μ L"、 "300 fg/μ L"、 "30 fg/μ L"、 "30 fg/μ L"; 将无模板对照 NTC 孔的 "Task" 一栏设置为 "NTC";将阴性质控 NCS 孔、待测样本 TS 孔、样本加标回收 ERC 孔的 "Task" 一栏设置为 "Unknown",并且在相应的 "Sample Name"一栏中分别命名为 "NCS"、 "TS"、 "ERC",参比荧光勾选 "ROX",之后点击 "Start Run",开始仪器运行。
- 4) 扩增程序设置:设置三步法扩增程序,反应体积 30 μL。

循环步骤	温度	时间	循环数	
污染消化	37°C	5 min	1	
预变性	95°C	5 min	1	
变性	95°C	15 sec		
退火/延伸(收集荧光)	60°C	30 sec	45	

表 4 扩增程序

www.yeasen.com Page 3 of 4

7. qPCR 结果分析

- 1)在"Analysis"的"Amplification Plot"面板中,系统会自动给出"Threshold",有时系统给出的"Threshold"离基线太近,导致复孔之间 Ct 相差甚远,可手动调节"Threshold"至合适位置,点击"Analyze"。此时可在"Multicomponent Plot"初步查看扩增曲线的形态是否正常。
- 2)在 "Analysis" 的 "Standard Curve" 面板中,可读取标准曲线的 R^2 、扩增效率(Eff%)、斜率(Slope)、截距(Intercept)等。正常的标曲: $R^2 > 0.99$,扩增效率在 90% ≤ Eff% ≤ 110%范围内,Slope 在-3.6~-3.1。
- 3)在"Analysis"的"View well table"面板中,"Quantity"一栏可读取无模板对照 NTC、阴性质控 NCS、待测样本TS、样本加标回收 ERC 的检测值,单位为 $fg/\mu L$,后续可在检测报告中将单位换算成 $pg/\mu L$ 或 pg/mL。
- 4) 结果分析的参数设置需依据具体的机型及使用的软件版本,一般也可由仪器自动判读。
- 5)根据待测样本 TS 和样本加标回收 ERC 的检测结果计算加标回收率,加标回收率要求在 $50\%\sim150\%$ 之间。加标回收率计算公式:回收率(%) = {样本加标测定值(eg.pg/ μ L)-样本测定值(eg.pg/ μ L)}×洗脱体积(eg. μ L) / DNA 加入量理论值(eg.pg) × 100%。
- 6) 阴性质控 NCS 的 Ct 值应大于标曲最低浓度 Ct 的均值。
- 7) 无模板对照 NTC 的检测结果应为 Undetermined 或 Ct 值≥32。

www.yeasen.com Page 4 of 4